Pre-Calculus 20 Chapter 7 Notes

Section 7.1 Absolute Value

Absolute value is how far a number is from zero. Distances are always positive values.

How far is 4 from zero?

How far is -4 from zero?

The symbol for absolute value is | |

Formal Definition of Absolute Value:

$$|x| = \begin{cases} x, & \text{if } x \ge 0 \\ -x, & \text{if } x < 0 \end{cases}$$
 (leave x as is if it is positive)

Ex1: Evaluate each of the following. Watch your order of operations. Absolute value is done in the same order as brackets in BEDMAS.

Ex2: Evaluate each of the following. Watch your order of operations.

Absolute value is done in the same order as brackets in BEDMAS. A number placed in front of the absolute value mean multiply (just like a number in front of brackets).

$$|-4| + |-3|$$
 $-2|-3|$ $2-3|-12+8|$ $-2|-2(5-7)^2+6|$

When trying to find the distance between 2 numbers, we use the absolute value to ensure that the answer will be a positive result since distance is always positive.

RECALL: We subtract 2 numbers to find the distance between them.

Ex3: The highest temperature this month was 19°C. The coldest temperature was a whopping -30°C. What is the total temperature difference?

$$|19 - (-30)| = |19 + 30| = |49| = 49$$

OR

|-30-19| = |-49| = 49 Notice that by using Absolute value, the order we subtract doesn't affect the final answer.

Textbook Assignment: Page 363-365

7.2 Graphing the Absolute Value Function

Learning what the basic absolute value function looks like!

Graph
$$y = x$$
.

Graph y = |x|

Table of Values

Х	У
3	3
2	2
1	1
0	0
-1	-1
-2	-2
-3	-3

Table of Values	alues	٧	0	le	ab	Ta
-----------------	-------	---	---	----	----	----

Х	У
3	3
2	2
1	1
0	0
-1	1
-2	2
-3	3

y = x and y = |x| graphed together.

Notice that for the Absolute Value table, all the y values are positive. (definition of absolute value)

Describe the similarities and differences between y = x and y = |x|.

The part of the graph where $x\ge 0$ is identical for both graphs.

The part of the graph where x<0 has differences:

- in y = x, the y values are negative
- in y = |x|, the y values are positive (reflection across the x-axis)

Formal Definition of Absolute Value Function:

$$y = \begin{cases} x, & \text{if } x \ge 0 \\ -x, & \text{if } x < 0 \end{cases}$$
 (leave x as is if it is positive) (multiply by -1 if it is negative)

Part 1: Graphing Absolute Values Functions of the form y = |ax + b| {Linear Functions}

Recall how to **Graph Linear Functions** written in the form y = ax + b

- Step 1: Graph the y-intercept point (b value)
- Step 2: Use the slope to graph another point.
- Step 3: Continue using the slope to graph more points in both directions (pos and neg)

Step2: Use the slope to graph another point from the y-int

Slope =
$$\frac{\text{rise}}{\text{run}} = \frac{2}{1} = \frac{\text{up } 2}{\text{right } 1}$$

Step1: Graph the y-intercept. (b = -3)

Example 1: Graph y = |2x - 3|

Step 1: Graph the function y = 2x - 3 (ignore the absolute value for now) previous example. (Graph at least 3 negative "y" values.)

<u>Step 2</u>: Calculate the exact value of the x-intercept (where the line crosses the x-axis) Recall that to do this, we set y = 0 and then solve for x.

$$y = 2x - 3$$

$$0 = 2x - 3$$

$$-2x = -3$$

$$x = \frac{3}{2}$$
 so the x-intercept is (1.5, 0)

<u>Step 3</u>: Reflect the y-values that are negative across the x-axis. The resulting V-Shaped graph is the graph of y = |2x - 3|

Step 4: Write out the Domain and Range of the graph y = |2x - 3|

D: $\{x \mid x \in R\}$

R: $\{y \mid y \in R \mid y \ge 0\}$

Example 2: Write out the function y = |2x - 3| as a piecewise function.

A piecewise function is ______

 $y = \begin{cases} 2x - 3, & \text{if } x \ge 1.5 \\ -(2x - 3), & \text{if } x < 1.5 \end{cases}$ (leave function as is when the graph is above the x-axis) or -2x + 3 is correct also for the second part {you can distribute the negative}

Example 3

Graph
$$y = \left| -\frac{1}{2}x + 1 \right|$$

Write $y = \left| -\frac{1}{2}x + 1 \right|$ as a piecewise function.

7.2 Graphing the Absolute Value Function (continued)

Graphing Absolute Values of Quadratic Functions of the form $y = |ax^2 + bx + c|$

Step 1: Find the x-intercepts.

Step 2: Find the vertex. (Recall: Vertex is always at the midpoint of thex-intercepts) Step3:

Graph the vertex and x-intercepts and find at least 2 more values to graph.

(Use Staircase Method or Table of Values) Example:

Graph
$$y = |x^2 - x - 2|$$

Ignore the absolute value for now, and graph as we did previously.

Step 1: To find the x-intercepts, set y = 0 and solve for x. If possible, solve by factoring. If it is not factorable, then you must use the quadratic formula.

Step 2: Find the vertex.

Step 3: Graph the x-intercepts and vertex. Then find more values to create a more accurate graph of the function. (Use Staircase Method 1a, 3a, 5a or Table of Values)

Step 4: Reflect the y-values that are negative across the x-axis. The resulting graph is the graph of $y = |x^2 - x - 2|$. You can choose to erase the part of the graph that is below the x-axis.

Domain: $\{x \mid x \in R\}$

Range: $\{y \mid y \in R \mid y \ge 0\}$

Write out the function $y = |x^2 - x - 2|$ as a piecewise function.

Extra Practice:

Graph the function $y = |-2x^2 - 3x + 9|$ and write the piecewise function.

Extra Notes for Section 7.2

Key Points to Remember:

$$y = |linear|$$

General look of graph:

$$y = |quadratic|$$

General look of graph:

Write the piecewise function for each of the following:

(Keep in mind the general look of the graph when deciding the "if" sections of the piecewise functions.) Remember to **find the x-intercepts** first!

1.
$$y = |2x - 1|$$

x-int: $0 = 2x - 1$
 $-2x = -1$
 $x = \frac{1}{2}$

2.
$$y = |-\frac{1}{2}x + 2|$$

$$y = \begin{cases} 2x-1, & \text{if } x \ge \frac{1}{2} & \text{(pos sloped part)} \\ -(2x-1), & \text{if } x < \frac{1}{2} & \text{(neg sloped part)} \\ -2x+1 & \text{was reflected} \end{cases}$$

3.
$$y = |x^2 - 16|$$

x-int: $0 = x^2 - 16$
 $0 = (x + 4)(x - 4)$
 $x = -4$ and 4

4.
$$y = |-x^2 + 1|$$

$$y = \begin{cases} x^2 - 16, & \text{if } x \le 4 \text{ and } x \ge 4 \text{ (outer parts)} \\ -(x^2 - 16), & \text{if } -4 < x < 4 \text{ (inner part)} \\ & \text{was reflected} \end{cases}$$

7.3 Absolute Value Equations

Recall the formal definition of Absolute Value:

How to Solve an Absolute Value Equation Algebraically:

Isolate the absolute value

Set up 2 cases

Positive Case

Negative Case

Check for extraneous solutions

Example 1:

Solve
$$|x - 2| + 3 = 9$$

Example 2:

Solve
$$|x - 3| = -4$$

Example 3:

Solve
$$|x^2 - 7x + 2| = 10$$

How to Solve an Absolute Value Equation Graphically:

Graph the left side of the equation.

Graph the right side of the equation.

Where the graphs intersect (x-coordinate) is the solution.

Example 4:

Solve graphically: |2x - 5| = 5 - 3x