5.1 Radicals

"r" is the _____

"n" is the _____

"x" is the _____

Perfect Squares:

- 1, 4,
- $x^2, x^4,$

Perfect Cubes

- 1, 8,
- $x^3, x^6,$

Changing Mixed Radicals to Entire Radicals

1)
$$7\sqrt{2}$$

2)
$$a^4 \sqrt{a}$$

4)
$$4\sqrt{3}$$

1)
$$7\sqrt{2}$$
 2) $a^4\sqrt{a}$ 3) 5b 4) $4\sqrt{3}$ 5) $j^3\sqrt{j}$

Radicals in Simplest Form

- the radicand contains no factor that is a perfect square, cube, etc.
- there is no radical in the denominator of a fraction.

example: Write as a mixed radical in simplest form.

1)
$$\sqrt{52}$$

2)
$$\sqrt{700}$$

3)
$$5\sqrt{72}$$

4)
$$\sqrt{50x^2}$$

5)
$$\sqrt{48y^5}$$

5)
$$\sqrt{48y^5}$$
 6) $\sqrt{63n^7p^4}$

7)
$$\sqrt{27x^4y^{12}}$$
 8) $\sqrt[4]{m^7}$

8)
$$\sqrt[4]{m^7}$$

Adding/Subtracting Radicals – simplify then combine like terms (terms that have the same index and the same radicand)

example: 1)
$$\sqrt{5} - 6\sqrt{5}$$

2)
$$3\sqrt{5} + 2\sqrt{2} - 8\sqrt{5} - 6\sqrt{2}$$

3)
$$\sqrt{50} + 3\sqrt{2}$$

3)
$$\sqrt{50} + 3\sqrt{2}$$
 4) $-\sqrt{27} + 3\sqrt{5} - \sqrt{80} - 2\sqrt{12}$ 5) $\sqrt{4c} - 4\sqrt{9c}$ (c \geq 0)

5)
$$\sqrt{4c} - 4\sqrt{9c}$$
 (c≥0)

Restrictions – if a radical represents a real number and has an even index, the radicand must be non-negative.

example: Given
$$\sqrt{4-x}$$
, then $4-x \ge 0$

Note: If the index is *odd*, the radicand can be any real number.

example:
$$\sqrt[3]{-27} =$$

5.2 Multiplying and Dividing Radical Expressions

Multiplying Radical Expressions

- multiply the _____ and multiply the _____ (if they have the *same index*)
- radicals should be simplified before multiplying
- answer in simplest form
- state restrictions for variables (if index is even, the radicand must be _____)

Examples – Multiply and simplify

1)
$$(5\sqrt{2})(3\sqrt{5})$$

2)
$$(3\sqrt{6})(-4\sqrt{2})$$

(Must have the same index.)

Simplify

3)
$$7\sqrt{3}(2\sqrt{3}-5\sqrt{7})$$

4)
$$5\sqrt[3]{9}(4\sqrt[3]{2}+9\sqrt[3]{3})$$

$$2(x+4)$$
$$2x+8$$

5)
$$(4\sqrt{2} + 2\sqrt{3})(5\sqrt{2} - 6\sqrt{3})$$
 6) $(\sqrt{5} - 3\sqrt{3})(2\sqrt{6} + \sqrt{2})$

6)
$$(\sqrt{5} - 3\sqrt{3})(2\sqrt{6} + \sqrt{2})$$

Recall Double Distributive Property OR FOIL:

$$(x + 2)(x - 4)$$

 $x^2 - 4x + 2x - 8$
 $x^2 - 2x - 8$

7)
$$(2\sqrt{5} - 3\sqrt{2})^2$$

8)
$$\left(5\sqrt{2} - 6\sqrt{3}\right)\left(5\sqrt{2} + 6\sqrt{3}\right)$$

Assignment: Page 289

5.2 (con't) Dividing Radical Expressions

- divide the _____ and divide the _____ (if they have the *same index*)
- A rational in simplest form does *not* have a radical in the denominator. If necessary, *rationalize* the denominator:
 - *a) monomial denominator* multiply the numerator and denominator by an expression that produces a rational number in the denominator
 - b) binomial denominator multiply the numerator and denominator by the _____ of the denominator. Conjugate: (a + b) and (a b) are conjugates

Examples – Find the conjugate of the following

1)
$$5\sqrt{2} - \sqrt{3} \rightarrow$$

$$2) - 2\sqrt{6} + 5\sqrt{7} \rightarrow$$

Examples - Divide and simplify

1)
$$\frac{\sqrt{24x^3}}{\sqrt{3x}}$$
; $x \ge 0$

2)
$$\frac{12\sqrt{6}}{15\sqrt{3}}$$

3)
$$\frac{8\sqrt{5}}{4\sqrt{2}}$$

$$4) \ \frac{7\sqrt{3}}{3\sqrt{x}}$$

5)
$$\frac{6}{3+\sqrt{2}}$$

6)
$$\frac{5\sqrt{2}}{3\sqrt{2}-\sqrt{3}}$$

$$7) \quad \frac{4+\sqrt{2}}{\sqrt{3}+5\sqrt{2}}$$

5.2 Additional Questions

A. Multiply and simplify

1.
$$(6\sqrt{5})(2\sqrt{3})$$

$$2. \left(\sqrt{27x^5}\right)\left(\sqrt{3x^7}\right)$$

3.
$$\sqrt{10} \left(2\sqrt{10} + \sqrt{5} \right)$$

4.
$$3\sqrt{x}\left(2\sqrt{x}-\sqrt{2}\right)$$

5.
$$(\sqrt{x}+1)(\sqrt{x}-3)$$

6.
$$\left(4\sqrt{3} + 3\sqrt{5}\right)^2$$

1.
$$12\sqrt{15}$$

$$9x^{6}$$

3.
$$20+5\sqrt{2}$$

Answers: 1.
$$12\sqrt{15}$$
 2. $9x^6$ 3. $20+5\sqrt{2}$ 4. $6x-3\sqrt{2x}$

5.
$$x-2\sqrt{x}-3$$
 6. $93+24\sqrt{15}$ 7. 2 8. $\sqrt{6}$ 9. $\frac{3}{x^2}$ 10. $\frac{\sqrt{30}}{3}$

6.
$$93 + 24\sqrt{15}$$

8.
$$\sqrt{6}$$

$$\frac{3}{x^2}$$

10.
$$\frac{1}{3}$$

11.
$$\frac{4\sqrt{30}}{5}$$

12.
$$\frac{3-\sqrt{3}}{3}$$

13.
$$\frac{2+2\sqrt{3}}{3}$$

14.
$$2\sqrt{3}-2$$

11.
$$\frac{4\sqrt{30}}{5}$$
 12. $\frac{3-\sqrt{3}}{3}$ 13. $\frac{2+2\sqrt{3}}{3}$ 14. $2\sqrt{3}-2$ 15. $\frac{8\sqrt{3}+2\sqrt{10}-12-\sqrt{30}}{19}$

B. Rationalize each denominator. Express each radical in simplest form.

7.
$$\frac{\sqrt{20}}{\sqrt{5}}$$

8.
$$\frac{\sqrt{90}}{\sqrt{15}}$$

9.
$$\frac{\sqrt{45x^3}}{\sqrt{5x^7}}$$

10.
$$\frac{\sqrt{10}}{\sqrt{3}}$$

11.
$$\frac{8\sqrt{15}}{5\sqrt{2}}$$

12.
$$\frac{\sqrt{3}-1}{\sqrt{3}}$$

13.
$$\frac{6\sqrt{2} + 2\sqrt{6}}{3\sqrt{6}}$$

14.
$$\frac{4}{\sqrt{3}+1}$$

15.
$$\frac{2\sqrt{2} - \sqrt{6}}{2\sqrt{6} - \sqrt{5}}$$

5.3 Radical Equations

A. Solving Equations with One Radical Term

Steps: 1. Isolate the radical

- 2. Square both sides of the equation
- 3. Solve
- 4. Check very important!! Does it meet the restrictions? Is it extraneous?

Example:

a) Solve. State the restrictions on x.

$$5 + \sqrt{2x - 1} = 12$$

b) Solve. State the restrictions on m if $m - \sqrt{2m+3} = 6$

Assignment: Page 300

5.3 Radical Equations (con't)

B. Solving Equations with 2 Radicals

Steps: 1. Isolate one radical (the more complex one)

- 2. Square both sides
- 3. If necessary, isolate radical again and square both sides again.
- 4. Solve
- 5. Check

Example: Solve
$$\sqrt{z+5} = \sqrt{2z-1}$$

Example: Solve
$$7 + \sqrt{3x} = \sqrt{5x + 4} + 5$$

Assignment: Page 301